WHITE PAPER

True Scale-to-Zero with the Intelligent Wake-Up
Proxy: Event-Driven Serverless Kubernetes
Powered by KEDA

Cutting Kubernetes TCO by turning always-on, idle containers
into on-demand workloads with true scale-to-zero and
intelligent wake-up.

About the solution

A Kubernetes-native pattern that combines true KEDA scale-to-zero, a dedicated API-driven
wake-up proxy, sub-5-second cold starts, and a generic web-based activation catalogue, with zero
vendor lock-in. Public references of similar end-to-end setups are extremely rare, and no
off-the-shelf product currently implements this architecture.

Jan Affolter

Product Owner & Digital Solution Design
Crissier, Vaud, Switzerland

December 2025

contact @proxy-keda.com

Table of contents

1. Executive Summary

2. The Problem: Idle Kubernetes Costs

3. Business Objectives

4. Solution Overview

5. Operational Behaviour (Conceptual)

6. Performance and Cost Impact

7. Positioning vs Alternatives

8. Risk, Security and Governance (High Level)

9. Next Steps and Engagement Model

1 EXECUTIVE SUMMARY

Many Kubernetes clusters waste a significant share of their compute budget keeping rarely used
microservices running idle, even though they generate little or no business value between requests. This
white paper presents a production-ready architecture for achieving true scale-to-zero in Kubernetes while
preserving rapid service availability, full autoscaling capabilities, and a user experience that remains within
psychologically acceptable wait times.

The solution combines KEDA (Kubernetes Event-Driven Autoscaling), a custom API-driven wake-up proxy,
and intelligent activation mechanisms to shut down idle workloads completely, then bring them back online
on demand. It is designed to integrate seamlessly into existing Kubernetes estates, portals, and ITSM tools,
without introducing vendor lock-in or requiring a new serverless platform.

Key result: the reference implementation reduces memory usage by up to 100% for idle services while
consistently achieving 1-5 second cold starts through targeted caching and orchestrated pod initialization.
Wake-up can be triggered either via a simple API call - enabling direct integration into portals and service
catalogs such as ServiceNow - or via the built-in web-based application activation catalogue, ensuring that
on-demand activation fits naturally into both automated workflows and human-driven service journeys.

2 The Problem: Idle Kubernetes Costs

2.1 The ldle Resource Paradox

Modern Kubernetes platforms make it easy to deploy hundreds of microservices, but most organizations
still run them “always on”, even when traffic is sparse or unpredictable. This leads to clusters where a large
share of memory and CPU is permanently allocated to idle containers that deliver no business value
between requests.

Teams know this and sometimes try manual scale-down to zero, but that breaks autoscaling, introduces
operational risk, and requires human intervention to bring services back online. Native HPA-only
approaches are not enough either, because a minimum replica count of at least one still means paying for
idle resources 24/7.

2.2 Resource Waste in Enterprise Environments

Across many enterprises, Kubernetes clusters run with a large proportion of their capacity permanently
allocated but rarely used. Industry analyses of real-world environments report average clusters running at
only 13-25% CPU utilization and 18-35% memory utilization, meaning 65-80% of provisioned compute
and memory often sits idle.

Studies and FinOps case studies further show that most Kubernetes estates waste between 30% and 65%
of paid resources due to over-provisioned requests and always-on workloads, with some clusters
overspending by $50,000-$500,000 per year, depending on size and cloud pricing. In practice, this waste is
concentrated in microservices and batch workloads that are kept “warm” 24/7 for convenience or fear of
cold starts, even when their actual usage is sporadic.

For CxOs, this means a significant share of the Kubernetes budget is funding idle containers—capacity that
consumes power and hardware on-premises, or inflates cloud bills, without delivering commensurate
business value. Eliminating idle consumption for rarely used services, while keeping the ability to bring
them online in seconds when needed, is therefore one of the highest-leverage cost optimization
opportunities in modern Kubernetes estates.

2.3 Why Current Options Fall Short
¢ Always-on microservices with HPA

* Simple and cloud-native, but minimum replica counts keep at least one pod running per
service, locking in idle memory and CPU for every application, regardless of actual demand.

¢ Cloud functions / Faa$S

» Offer true scale-to-zero but introduce provider lock-in, pay-per-invocation pricing, and
cold-start behaviours that can range from a few seconds to well over ten seconds depending
on runtime and platform.

¢ Knative and similar serverless layers

* Bring request-driven autoscaling and can reduce cold starts, but add networking and
control-plane complexity, often require additional meshes or gateways, and still show
variable cold-start latencies in real-world setups.

As a result, many enterprises either accept high levels of idle Kubernetes spend or adopt serverless
products that fragment their platform and introduce new forms of lock-in. This leaves a clear gap for a
Kubernetes-native pattern that delivers true scale-to-zero, predictable low cold-start times, and no vendor
lock-in, while remaining simple enough to operate at scale.

2.4 Scope of the Solution

Proxy-KEDA2 addresses these idle-cost and cold-start challenges by introducing a Kubernetes-native pattern
that combines true KEDA scale-to-zero with an API-driven wake-up proxy and a lightweight activation
catalogue. It enables workloads to shut down completely when idle, then reliably wake in 1-5 seconds,
without changing the underlying applications or abandoning existing Kubernetes investments.

The approach remains fully portable, relying only on standard Kubernetes and open-source KEDA, with no
dependence on proprietary serverless platforms or per-invocation pricing models. Applications can be
activated either via a simple API call—integrated into portals and ITSM tools such as ServiceNow—or via the
built-in web-based catalogue, making on-demand environments accessible to both users and automation.

3 Business Objectives

3.1 Cost and TCO goals

The primary objective is to eliminate idle resource spend for non-critical and infrequently used services by
scaling their workloads all the way to zero when they are not in use. The solution targets up to 100%
reduction in memory usage for dormant services, while preserving agreed SLAs for availability and response
time so that cost savings do not come at the expense of user experience.

On-premises, this means reducing power and hardware utilization by allowing single-node or edge clusters
to shed idle workloads; in hybrid and cloud environments, it means avoiding compute and memory charges
for services that are not actively serving traffic, rather than keeping them warm 24/7.

3.2 Performance and user-experience constraints

The solution is designed to keep applications “feel instant” for end-users and internal consumers, even
when they have been scaled to zero. Target behaviour is 1-5 second cold starts from the moment a wake-up
is triggered until the first request can be served, with wake-up latency on the control path (API call) well
below typical application SLA thresholds.

Autoscaling capabilities must remain fully intact during active periods: once a service is awake, standard
Kubernetes and KEDA scaling should handle traffic spikes and load variations without special handling or
manual intervention.

3.3 Non-functional goals

The pattern must remain Kubernetes-native and portable, relying only on upstream Kubernetes and
open-source KEDA, with no dependence on proprietary serverless platforms or per-invocation pricing
models that introduce vendor lock-in.

Operationally, the goal is simplicity: wake-up is performed via a simple HTTP/API endpoint that can be
integrated into portals and ITSM/service catalogs such as ServiceNow, as well as through a built-in activation
catalogue for human users. The approach should reuse existing Kubernetes and KEDA skills, avoid
introducing new heavy frameworks, and require no manual intervention during normal operation

4 Solution Overview

4.1 High-level architecture

The solution introduces a Kubernetes-native pattern that sits entirely inside the existing cluster and
leverages standard components: Kubernetes deployments and services, KEDA for event-driven autoscaling
and scale-to-zero, and a lightweight API-driven wake-up proxy with a web-based activation catalogue. At a
high level, applications scale down to zero pods when idle, and are brought back online in seconds when a
user or system triggers a wake-up.

A single architecture diagram is sufficient at this level: external consumers (users, portals, ITSM) call either
the activation catalogue or a wake-up API; the proxy then coordinates with KEDA and Kubernetes to raise
replicas from 0 to 1 and hand traffic back through the existing ingress or APl gateway.

True Scale-to-Zero with Intelligent Wake-Up Proxy
End User

Browse
applications

Kubernetes Platform

proxy-KEDA?2

g g1
Application Activation "Apps API
Catalogue (Web Ul) Automation flux"

Trigger
wake-up API

Use applications
once awake (HTTP(S))

Trigger
wake-up API

]

Wake-Up API e

(HTTP service)

\ /

Ingress / API Gateway

g]
Start ’ Route HTTP(S) traffic

KEDA Controller application /
/

/
/
/
/

¥

]
Application Workload

\ /

/
\ » EXxpose metrics
/

A v

£
Observability & Metrics
(Prometheus / stack)

4.2

4.3

Key building blocks

KEDA scale-to-zero
KEDA's ScaledObijects drive true scale-to-zero by reducing replicas to 0 when triggers are idle, then
restoring them when demand returns, integrating natively with the Horizontal Pod Autoscaler.

API-driven wake-up proxy (Proxy-KEDA2)

A dedicated control-plane service exposes a simple HTTP API (/wake/<app>), patches KEDA and
deployment settings to wake applications on demand, waits for readiness, and then hands control
back to normal autoscaling.

Activation catalogue (web Ul)
A lightweight web portal lists onboarded applications with their status and lets users trigger
wake-up and then open the application, without needing kubectl or direct cluster access.

Kubernetes-native integration

All scaling and wake-up behaviour is implemented using the Kubernetes API, standard workloads,
and KEDA CRDs, so the pattern runs on any CNCF-conformant cluster without proprietary
dependencies.

Integration points

The wake-up APl is designed to integrate cleanly with existing enterprise tools:

Portals and intranets can embed “Start application” buttons that call the wake-up API before
redirecting users to the application URL.

ITSM and service catalogs (e.g. ServiceNow) can register catalog items that invoke the API as part
of a request or fulfillment workflow, leveraging existing Kubernetes spokes or generic REST
integrations.

CI/CD and automation pipelines can use the same API to bring environments online for tests,
demos, or batch windows, and let KEDA return them to zero when no longer needed.

5 Operational Behaviour (Conceptual)

5.1 Idle state

In the idle state, selected microservices are fully deployed but scaled down to zero running pods. KEDA
monitors the chosen triggers and, when there is no activity, reduces the replicas to zero so that the
applications consume no CPU or memory while they are not in use. From a user perspective, the application
still exists in the catalogue or portal, but it is in a “sleeping” state rather than burning resources in the
background.

5.2 Wake-up

When a user, portal, or ITSM workflow needs a dormant application, it calls the wake-up API or uses the
activation catalogue to start it. The wake-up proxy coordinates with the autoscaling layer so that the
application is brought back from zero to a running instance, and then made reachable again through the
existing ingress or API gateway. End-users experience a short one-time delay of 1-5 seconds as the
application wakes, after which it behaves like any other online service.

5.3 Active

Once awake, the application runs as a normal Kubernetes workload. Standard autoscaling behaviour
applies: KEDA and the native Horizontal Pod Autoscaler can increase or decrease the number of replicas
based on demand, ensuring that performance and SLAs are maintained during peak usage without manual
intervention. For the business, this means that scale-to-zero does not limit elasticity; it only eliminates cost
when there is no traffic.

5.4 Auto-sleep

After a configurable period of inactivity, the same event-driven logic that woke the service allows it to
return to the idle state. When no triggers are active and no requests are observed for a defined cooling
period, the application is again scaled back to zero replicas, freeing all associated compute and memory
resources. This creates a continuous cycle of Idle = Wake-up = Active = Auto-sleep that aligns resource
usage with real demand while keeping the operational model simple and predictable.

6 Performance and Cost Impact

6.1 Cold-start behaviour

In the reference implementation, applications that have been fully scaled to zero can typically be brought
back online in 1-5 seconds from the moment a wake-up is triggered until the first request is served. This
range is achieved by combining image caching, streamlined initialization paths, and tight coordination
between the wake-up proxy and the autoscaling layer. For end-users, this translates into a brief, predictable
delay on first access, after which the service behaves like any always-on microservice.

This cold-start profile compares favourably with many serverless and scale-to-zero patterns, where cold
starts of several seconds to minutes are not uncommon for heavier workloads, especially when images
must be pulled or GPU resources are involved.

6.2 Idle resource elimination

By allowing selected services to scale all the way down to zero replicas when not in use, the pattern
eliminates idle CPU and memory consumption for those workloads. In cluster-level terms, this can translate
into up to 100% reduction in memory usage for dormant services, and a meaningful drop in overall cluster
utilization, particularly in estates where many internal tools and low-traffic microservices are kept
permanently warm today.

For organizations that currently waste 30-65% of their Kubernetes resources due to over-provisioning and
always-on workloads, removing idle pods is one of the most direct ways to cut that waste without
compromising performance when the services are actually needed.

6.3 lllustrative cost scenarios
¢ On-premises clusters

* Scaling non-critical services to zero during idle periods reduces power draw and frees
capacity on existing hardware, delaying or avoiding node expansions and new server
purchases.

¢ Cloud and hybrid environments

* In managed Kubernetes services, every idle vCPU and GB of RAM still incurs cost; by
removing pods entirely instead of keeping them warm, organizations can reclaim a
significant share of their node spend, especially for large clusters running many
low-duty-cycle services.

Depending on the size of the estate and the proportion of workloads that can adopt this pattern,
enterprises can expect meaningful reductions in their Kubernetes infrastructure costs while preserving, and
in some cases improving, overall utilization efficiency.

7 Positioning vs Alternatives

7.1 When this pattern is preferable

For enterprises that already standardized on Kubernetes, this pattern offers true scale-to-zero without
leaving the Kubernetes ecosystem, making it more attractive than “always-on” microservices, Knative, or
standalone Faa$ in several situations. Always-on microservices with HPA remain simple but keep at least
one replica running per service, locking in idle memory and CPU even when traffic is sporadic.

Knative and cloud functions are well suited for net-new serverless use cases, but they introduce additional
control planes, networking layers, and provider-specific runtimes, with associated lock-in and variable
cold-start behaviour. The proposed pattern is preferable when organizations want Kubernetes-native
scale-to-zero, predictable 1-5 second wake-ups, and integration into existing clusters without adopting a
new platform.

7.2 User experience and perceived waiting time

The solution is explicitly designed for on-demand activation triggered by humans or human-centric flows:
service catalogs, ITSM portals, internal applications, and automation that runs in front of a user or business
process. In these contexts, the key question is not just “Can we wake from zero?” but “Does the wake-up
delay feel acceptable to people waiting to use the service?”.

UX research identifies three important thresholds: around 0.1 seconds feels instantaneous, about 1
second keeps the user’s flow of thought uninterrupted, and around 10 seconds is the upper limit before
attention drifts and frustration rises sharply. By keeping cold-start times in the 1-5 second range, the
proposed pattern stays within a psychologically acceptable window: users notice that the system is “doing
something”, but the delay is short enough that they typically do not abandon the task or perceive the
application as broken.

7.3 How it complements Kubernetes and FinOps

The solution complements existing Kubernetes and FinOps practices by turning idle workloads into
on-demand workloads, rather than replacing current autoscaling or cost-management tools. It works
alongside HPA/KEDA, node rightsizing, and cluster-level optimizations, focusing specifically on eliminating
the cost of rarely used services that today are simply left running.

For FinOps teams, this adds another lever to the workload-optimization toolkit: instead of only tuning
requests and limits, they can classify services by duty cycle and apply scale-to-zero for low-duty-cycle
applications, improving utilization KPIs and reducing waste without restructuring the entire platform.

8 Risk, Security and Governance (High Level)

8.1 Fit with security and governance

The solution is designed to plug into existing Kubernetes security and governance models rather than
bypass them. All actions (wake-up, scale-to-zero, status checks) go through the Kubernetes APl and are
governed by standard RBAC policies, so proxy-KEDA2 and the activation catalogue can be given tightly
scoped service accounts with least-privilege access. This allows organizations to align the pattern with their
existing controls for environment separation, change management, and auditability, including
policy-as-code and admission control where in place.

From a governance standpoint, scale-to-zero is an additional operating mode for selected workloads, not a
separate platform: it can be brought under the same change, risk, and compliance processes already
defined for Kubernetes deployments and autoscaling policies. Kubernetes governance guidance emphasizes
aligning platform behaviour with business objectives and applying consistent guardrails, both of which this
pattern supports by using standard resources and controllers.

8.2 Key assurances

The architecture is intentionally Kubernetes-native and portable, relying on upstream Kubernetes constructs
and the open-source KEDA project, which is designed to run on any conformant Kubernetes cluster. There is
no dependency on proprietary serverless runtimes or per-invocation billing models, which reduces vendor
lock-in risk and keeps exit options open between on-prem, private cloud, and managed Kubernetes
services.

Security-wise, KEDA and the wake-up proxy follow established patterns: KEDA uses standard CRDs and can
authenticate to external systems via Kubernetes secrets and dedicated authentication resources, while
RBAC is used to grant only the permissions required for scaling operations. This means organizations can
adopt true scale-to-zero with fast wake-up while staying within their existing security, compliance, and
governance frameworks.

8.3 Future Enhancements: Administrative Control

In a future iteration, the proxy can also expose controlled administration endpoints for de-provisioning or
updating onboarded applications, guarded by dedicated security tokens that provide restricted access to
proxy administration. These tokens can be used by either humans (platform teams) or automation (CI/CD,
ITSM workflows) to safely trigger lifecycle actions without granting direct cluster-admin privileges.

9 Next Steps and Engagement Model

9.1 Suggested pilot scope

This pilot lets the executive team validate, under an existing non-disclosure agreement, that scale-to-zero
can reduce infrastructure costs on non-critical Kubernetes services within a short, low-risk engagement
before committing to broader rollout. The recommended pilot focuses on a small, well-defined set of
low-duty-cycle services (for example 5-10 internal tools or portals) running on an existing Kubernetes
cluster, with all activities conducted remotely using standard collaboration and access tools while local
teams retain full control over the environment.

The customer team selects the cluster and candidate workloads; the engagement then concentrates on
deploying and configuring proxy-KEDA2 and KEDA, wiring them to existing services, and enabling fast
wake-up for those applications without changing their core code.

The goal is to validate cold-start behaviour and idle resource reduction on real workloads with minimal
disruption and no travel overhead.

9.2 Engagement options

Engagement is structured as a remote collaboration from the outset and typically starts with a brief online
assessment workshop to review the current Kubernetes estate, identify pilot candidates, and agree on
success metrics.

The PoC phase then focuses on remote support for deploying and tuning proxy-KEDA2 and its associated
features (wake-up API, activation catalogue, KEDA configuration) on the customer’s existing cluster. Your
team operates the environment; the support role is to provide reference manifests, configuration guidance,
and troubleshooting to achieve target wake-up times on selected services. During this phase, KEDA is
installed on the existing cluster, selected service manifests are updated to support scale-to-zero, and the
proxy-KEDA2 component is deployed from a container registry, ideally GitHub Container Registry (GHCR)
under a dedicated organization repository, using image pull secrets if required for private images.

To keep the initial pilot simple, the proxy-KEDA2 component is deployed and managed independently of
the customer’s existing CI/CD pipelines; further integration of proxy-KEDA2 and KEDA into CI/CD or GitOps
workflows remains the responsibility of the customer’s platform and application teams, with on-demand
support available to help design and review that integration when they decide to industrialize the pattern.

If the pilot is successful, a follow-up engagement can expand the pattern to additional clusters or services
and can include sharing more detailed reference implementation assets and best practices while still
operating entirely remotely, always within the existing NDA framework. Commercial terms for the
assessment and PoC are agreed separately based on scope and platform maturity, ensuring a time-boxed,
predictable engagement without open-ended consulting costs.

9.3 Prerequisites for a pilot
To keep the pilot focused and effective, a few baseline conditions are required:

¢ Kubernetes platform in place
At least one CNCF-conformant Kubernetes cluster (on-prem or managed cloud) with basic
observability (metrics, logs) already available.

¢ Candidate workloads identified
A small set of low-duty-cycle services (e.g. 5-10 internal tools or portals) that currently run 24/7
and are good candidates for scale-to-zero without impacting critical customer-facing SLAs.

¢ Platform access and ownership
A platform / SRE team with permissions to deploy components into the cluster (namespaces, RBAC,
Ingress) and to integrate with existing CI/CD or ITSM systems where needed.

¢ Remote collaboration tools
Standard remote access and collaboration capabilities (screen-sharing, ticketing, shared
documentation) to support a fully remote assessment and PoC

	2.1 The Idle Resource Paradox
	2.2 Resource Waste in Enterprise Environments
	2.3 Why Current Options Fall Short
	2.4 Scope of the Solution
	3.1 Cost and TCO goals
	3.2 Performance and user‑experience constraints
	3.3 Non‑functional goals
	4.1 High‑level architecture
	4.2 Key building blocks
	4.3 Integration points
	5.1 Idle state
	5.2 Wake‑up
	5.3 Active
	5.4 Auto‑sleep
	6.1 Cold‑start behaviour
	6.2 Idle resource elimination
	6.3 Illustrative cost scenarios
	7.1 When this pattern is preferable
	7.2 User experience and perceived waiting time
	7.3 How it complements Kubernetes and FinOps
	8.1 Fit with security and governance
	8.2 Key assurances
	8.3 Future Enhancements: Administrative Control
	9.1 Suggested pilot scope
	9.2 Engagement options
	9.3 Prerequisites for a pilot

